of the standard as well as from those in other deposited films. The closest match in intensity is achieved in the deposits on Pyrex glass (entries nos. 2 and 4, Table II). One may assume little or no preferential orientation in these deposits. The deposition of Pt from (MeCp)PtMe₃, 1, occurs at the lowest temperature (120 °C); these deposits show the greatest departure from the isotropic standard reflections. However, on the Si(100) surfaces there is preferred orientation; the most pronounced is seen in entry no. 5, with the Pt(200) being favored for the surface deposited films. By comparison, Pt films deposited in 3 min from Pt(ethylene)₃ at 50 °C in an ethylene stream (<1 atom % C) are amorphous.²⁷ The film resistivity for the Pt films was found to be around 26 $\mu\Omega$ ·cm. This value is somewhat higher than the film resistivity for Pt films deposition.

Analyses by X-ray photoelectron spectroscopy (XPS, Figure 9) shows no detectable amount of carbon (<1 atom % C) in the bulk of the film. These analyses are carried out after Ar⁺ sputtering to remove the oxygen- and carbon-containing impurities on the surface. No other impurities are detected in the platinum. Scanning electron microscopy (SEM, Figure 8) shows smooth film composed of crystallites about 250 Å across compared with 1000 Å across in the Pt film from CpPtMe₃.⁸

(27) Müller, H.-J.; Kaesz, H. D., manuscript in preparation.

Acknowledgment. This work was supported in part by a grant from the Raychem Corporation with a matching grant from the University of California Microelectronics Innovation and Computer Research Opportunities (MICRO) Program. We thank H. Thridandam and Dr. H.-J. Müller for permission to quote experimental results prior to publication. We also thank Dr. S. Khan for assistance with XRD studies, H. Thridandam and A. Lee for assistance with the SEM, Dr. Y.-J. Chen for helpful discussions, Yihui Yang and Professor J. S. Valentine for assistance with the UV spectra, and A. Owyeung for assistance with the illustrations.

Registry No. 1, 94442-22-5; MeCp, 26519-91-5; Me₃PtI, 14364-93-3; Pt, 7440-06-4.

Supplementary Material Available: ¹H homonuclear COSY contour plot of (MeCp)PtMe₃, 1 (Figure A), ¹H-¹³C heteronuclear shift correlation contour plot of 1 (Figure B), diagram of the apparatus for the vapor pressure measurement (Figure C), UV spectrum of 1 in heptane (Figure D), least-squares plots of UV absorbance vs concentration of CpPtMe₃ and 1 (Figures E and F), comparison of melting points of (R-C₅H₄)_nML_x (R = H or Me) (Table A), final atomic parameters (Table B), selected bond distances and angles (Tables C and D), and final thermal parameters for the Pt atom (Table E) (8 pages); table of observed and calculated structure factors (4 pages). Ordering information is given on any current masthead page.

Reactions of Carbon Atoms/Clusters with Methane, Methyl Bromide, and Water at 10 and 77 K

Gi Ho Jeong,^{‡,1} Kenneth J. Klabunde,^{*,‡} Ohm-Guo Pan,[†] G. C. Paul,[†] and Philip B. Shevlin^{*,†}

Contribution from the Departments of Chemistry, Kansas State University, Manhattan, Kansas 66506, and Auburn University, Auburn, Alabama 36849. Received April 3, 1989

Abstract: The reactions of C atoms, C_2 , and C_3 were monitored under matrix isolation conditions (10 K, argon) with methane, methyl bromide, and water. With $CH_4 + C$, the singlet state (¹D) reacted by C-H insertion followed by rearrangement to ethylene. Ground-state ³P atoms did not react, although C_2 reacted but products could not be spectroscopically determined. Trimer C_3 and higher clusters did not react with CH_4 . With CH_3Br , C, C_2 , C_3 , and higher clusters all reacted. The main product with C atoms was the stabilized carbene CH_3CBr formed by C-Br insertion. With H_2O , a major product was CO formed from ¹S and/or ¹D carbon atoms. Carbon clusters also reacted, but less efficiently than with CH_3Br . In order to determine the nature of the isolable products when carbon vapor reacted with methane, carbon arc experiments and 5-diazotetrazole decomposition experiments were carried out at 77 K. Isotope labeling and product analyses showed that C_1 reacted both by C-H insertion and hydrogen abstraction, and one mode for acetylene formation may be dimerization of CH. Vapor components C_2 and C_3 react with methane by hydrogen abstraction processes at 77 K.

Reactions of carbon atoms, dimers, and trimers have fascinated scientists for many years.² A variety of methods have been employed to generate carbon vapor, including arcs and thermal (resistive) heating. Differing portions of C versus C_2 versus C_3 are found with different evaporation methods.

The chemistry of C, C_2 , and C_3 has been studied under a variety of conditions:³ (a) simultaneous deposition of carbon vapor and reactant on a cold surface; (b) time-delay techniques, in which less than a monolayer of carbon is deposited onto an inert substrate and reactant added later; (c) gas-phase reactions (pyrolysis of reactant is a severe problem); and (d) lasers used to evaporate carbon in pulses; heating proceeds on a much shorter time scale.

Laser evaporation of carbon does provide some advantages.⁴ A laser pulse can be very short, and the material evaporated can traverse the distance to the reaction zone (in this case a cold window) in the dark. During this time all excited state species will radiatively decay unless they are metastable states. Thus, Table I. Second-Order Rate Constants of C (³P, ¹D) with Various Gases (k: $cm^3 s^{-1} molecule^{-1})^a$

	molecule)	
gas	C(³ P)	C(¹ D)
NO	$7.3 \pm 2.2 \times 10^{-11}$	$4.7 \pm 1.3 \times 10^{-11}$
Ο,	$3.3 \pm 1.5 \times 10^{-11}$	2.6×10^{-11}
CŌ	$6.3 \pm 2.7 \times 10^{-32}$	$1.6 \pm 0.6 \times 10^{-11}$
CH₄	$<2.5 \times 10^{-15}$	$2.1 \pm 0.5 \times 10^{-10}$
H ₂ O	$<3.6 \times 10^{-13}$	1.7×10^{-11}

^a Data taken from ref 7.

in this work we evaporated carbon by focusing a XeCl excimer laser beam on a graphite rod. The experimental setup has been

[‡]Kansas State University.

[†]Auburn University.

On leave from the Department of Chemistry, Busan National University, Busan, 609-735 South Korea.
 For recent reviews of the chemistry of atomic carbon see: (a) Skell,

⁽²⁾ For recent reviews of the chemistry of atomic carbon see: (a) Skell, P. S.; Havel, J.; McGlinchey, M. J. Acc. Chem. Res. 1973, 6, 97-105. (b) Mackay, C. In Carbenes; Moss, R. A., Jones, M., Jr., Eds.; Wiley-Interscience: New York, 1975; Vol. II, pp 1-42. (c) Shevlin, P. B. In Reactive Intermediates; Abramovitch, R. A., Ed.; Plenum Press: New York, 1980; Vol. I, pp 1-36.

described earlier.⁵ The vapor jet was cocondensed with argon and/or gaseous reactants on a cold KBr, KCl, or CaF₂ window. Reactant gases and argon were transparent to the 308-nm laser beam, so photolytic interactions should be minimal. Reactant pyrolysis problems are also eliminated using this method.

There are three low-lying energy states of the carbon atom: $C({}^{3}P)$, $C({}^{1}D)$, and $C({}^{1}S)$. The ${}^{1}D$ state is 1.263 eV above the ground ³P state, while the ¹S is 2.683 eV above the ground state. The ¹D metastable has a long lifetime while the ¹S is much shorter.⁶ Because of the lifetimes of these metastable states, and the power of the laser beam, the generation of ¹S, ¹D, and ³P carbon atoms is very likely, and they should survive the flight to the reaction zone. Thus, we must take into account reactivities of both singlet and triplet atoms.^{7,8} Husain and Kirsch⁷ have reported kinetic data on gas-phase carbon atom reactions with various molecules. The reaction rates were vastly different for ³P versus ¹D. In particular, note that CH₄ and CO reacted much faster with ¹D (see Table I).

It has been predicted that the reaction of CH₄ with C atoms should proceed with a relatively low E_a .⁹ Likewise, insertion of C into the O-H bond of H₂O has been predicted, through SCF calculations, to be a facile process, and H-C-OH should be bound with respect to $C + H_2O$ by 50 kcal/mol.¹⁰ Furthermore, trans H-C-OH has been predicted to be more stable than the cis isomer by 5-6 kcal. In another study, however, a rather large energy barrier to form H-C-OH has been predicted, and deoxygenation to generate CO + H_2 was proposed to be most favorable.¹¹ Indeed, recent experimental evidence and ab initio theoretical approaches allowed the conclusion that the process having the lowest E_a would be cleavage of an initially formed C-OH₂ adduct to CO + H₂.¹² However, formaldehyde could also form from a C-OH₂ adduct.

Other group 14 atoms (Si, Ge, Sn, and Pb) and their dimers form adducts with H₂O under matrix isolation conditions, and only insert into the O-H bond upon photolysis.¹³ The M - OH, adduct was detected by a change in infrared bending frequencies.

Hence, questions arise as to what species will form at very low temperatures (matrix isolation conditions) when carbon atoms are codeposited with water: H-C-OH, CO, H₂, or C-OH₂? Infrared spectroscopy should be able to differentiate these species. Also, what will form with C + methane or C + alkyl halides? Since these systems have never been investigated under such low-temperature conditions, we believed such a study was worthwhile.

It must be pointed out though that the carbon vapor-argon system has been studied extensively by Weltner and co-workers.¹⁴⁻¹⁶ This previous work was very helpful to us, especially for IR band assignments for carbon clusters (believed to be linear species).

- (3) Peterson, R. F., Jr.; Wolfgang, R. Advances in High Temperature Chemistry; Eyring, L., Ed.; Academic Press: New York, 1971; Vol. 4, pp 43-70.
- (4) Jeong, G. H. Ph.D. Thesis, Kansas University, 1988, p 14-26. (5) Klabunde, K. J.; Jeong, G. H. J. Am. Chem. Soc. 1986, 108,
- 7103-7104. (6) Wiese, W. L.; Smith, M. W.; Glennon, B. M. Atomic Transition
- Probabilities. Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 1966, 36. (7) Husain, D.; Kirsch, L. J. Trans. Faraday Soc. 1971, 67, 2025-2035,
- 2886-2895, 3166-3175.
- (8) Braun, W.; Bass, A. M.; Davis, D. D.; Simmons, J. D. Proc. R. Soc. London, Ser. A 1969, 312, 417-434.
 - (9) Lebrilla, C. B.; Maier, W. F. Chem. Phys. Lett. 1984, 105, 183-188. (10) Sakai, S.; Jordon, K. D. Chem. Phys. Lett. 1986, 130, 103-110.
 - (11) Mackay, C.; Wolfgang, R. J. Am. Chem. Soc. 1961, 83, 2399-2400.
- (12) Ahmed, S. N.; McKee, M. L.; Shevlin, P. B. J. Am. Chem. Soc. 1983,
- 105, 3942-3947. (13) Dubrin, J.; Mackey, C.; Wolfgang, R. J. Am. Chem. Soc. 1964, 86, 4747-4752; J. Chem. Phys. 1964, 41, 3267-3268
- (14) Weltner, W., Jr.; Walsch, P. N.; Angell, C. L. J. Chem. Phys. 1964, 40, 1299-1305.
- (15) Weltner, W., Jr.; McLeod, D., Jr. J. Chem. Phys. 1964, 40, 1305-1316.
- (16) Weltner, W., Jr.; McLeod, D., Jr., J. Chem. Phys. 1966, 45, 3096-3105.

Figure 1. UV absorption spectra for C_2 and C_3 at 10 K: (A) in 5% CH_4 /argon, laser evaporation time = 15 min (XeCl excimer laser, 75 mJ/pulse, 10 Hz); (B) in pure argon, evaporation time = 15 min (same laser conditions).

Figure 2. Partial infrared absorption spectra of carbon vapor/methane system at 10 K: (A) methane, (B) carbon plus methane.

Results and Discussion

Carbon and Methane. Laser-produced carbon vapor was trapped at 10 K in argon. Then UV-vis spectroscopy was used to monitor the matrix trapping of C_2 and C_3 , as previously reported by Milligan and co-workers¹⁷ and Weltner and co-workers.¹⁴

Figure 3. Partial infrared absorption spectra of carbon vapor/methane system at 10 K: (A) methane only, (B) carbon plus methane).

Unfortunately, carbon atoms could not be monitored since they absorb in the vacuum UV. Figure 1 shows a typical spectrum. The lower spectrum shows C_2 and C_3 deposited with 5% CH_4/Ar and the upper spectrum in pure Ar. Note that the band intensity for C_3 is slightly reduced while C_2 shows a much reduced intensity in the CH_4/Ar matrix. In pure CH_4 , both C_2 and C_3 were completely consumed.

An FT-IR study of the carbon-methane system is illustrated The new bands observed when carbon and in Figures 2-4. methane were combined can be assigned to ethylene as the major product. Thus, the band at 1544.5 cm⁻¹ can be assigned to $\nu_{C=C}$ (trapping in certain matrix sites could allow an asymmetry so that this band can be observed).¹⁸ The 1437.0-cm⁻¹ band can be assigned to CH₂ bending, and 955.7, 951.9 to H₂C=CH deformation.19

Since earlier studies of gas-phase carbon species have shown that ¹D carbon atoms are much more reactive with CH₄ than ³P,^{7,8} and since our results show that C_2H_4 is readily formed, we believe this reaction product comes from ¹S or ¹D atoms (singlet-state atoms yielding singlet molecules):

$$C(^{1}D) + CH_{4} \rightarrow H - C - CH_{3} \rightarrow H_{2}C = CH_{2}$$

Another new feature observed in the $carbon/CH_4$ spectra is the significant reduction in C_3 (see band "b" in Figure 4) when pure CH₄ is present. Also note a band "a" in Figure 4 at 2136.6 cm⁻¹, which could be due to an acetylenic compound. It seems that C_3 reacts in a CH_4 matrix, but product identification from C_3 (or C_2) is difficult by matrix spectroscopy approaches (but see later discussion). This is unfortunate since C_3 is such an abundant species in the vapor.²⁰⁻²² However, the presence of a plethora of large carbon clusters, which appear to be unreactive in CH₄ and exhibit many active IR bands, makes spectroscopic product identification very difficult. (Figure 4 shows many of the IR bands due to clusters; assignments have been given by Weltner and co-workers.15,23)

- 2671-2677.
- (19) Cf. Aldrich IR Library of Non-Aromatic Hydrocarbons, p 1; also cf. Sadtler IR spectra 42923P and 41316P for comparing CH_4 and C_2H_4 . (20) Drowart, J.; Burns, R. P.; DeMaria, G.; Inghram, M. G. J. Chem.
- Phys. 1959, 31, 1131-1132.
- (21) Berkowitz, J.; Chupka, W. A. J. Chem. Phys. 1964, 40, 2735-2736. (22) Zavitsanos, P. D.; Carlson, G. A. J. Chem. Phys. 1973, 59, 2966-2973.
- (23) Thompson, K. R.; DeKock, R. L.; Weltner, W., Jr. J. Am. Chem. Soc. 1971, 93, 4688-4695.

Figure 4. Partial infrared absorption spectra of carbon vapor/methane system at 10 K: (A) carbon in argon, (B) carbon in methane. Bands are mainly due to carbon clusters.

Since the matrix isolation studies presented such problems with product identification, larger scale reactions were undertaken at 77 K. A carbon arc was used first as the source of C_1 , C_2 , and C_{3} .²⁴ The products of these species reacting with methane as determined by GC, GC-MS, and IR are ethylene, acetylene, ethane, butadiyne, and trace amounts of allene (eq 1).

$$C_{(vapor)} + CH_4 \rightarrow C_2H_2 + C_2H_4 + C_2H_6 + CH_2 = C = CH_2 + HC = C - C = CH (1)$$

In order to obtain information concerning the mechanism of the formation of the acetylene, allene, and butadiyne, we have condensed carbon vapor at 77 K in the presence of a mixture of CH_4 and CD_4 (1.23:1) and have examined the label distribution in these products by mass spectrometry. The acetylene generated in this reaction was in the ratio $d_0:d_1:d_2 = 1:2.08:1.06$. This type of deuterium distribution rules out any substantial contribution to the mechanism of acetylene formation by decomposition of energetic ethanylidene (eq 2) or ethylene (eq 3), processes which may be important at low pressures in the gas phase and in hot

$$C + CH_4 \longrightarrow [H^{-C} CH_3]^{\ddagger} \longrightarrow C_2H_2' + H_2$$
 (2)

$$C + CH_4 \xrightarrow{} H^{\frown} CH_3 \xrightarrow{} [C_2H_4]^{\ddagger} \xrightarrow{} C_2H_2 + H_2 \quad (3)$$

atom chemistry. This result indicates that if C_2 is the precursor to the acetylene, it removes hydrogen from two separate methane molecules in a series of consecutive abstractions (eq 4). (We

$$C \equiv C + CH_4 \rightarrow H - C \equiv C \xrightarrow{CH_4} H - C \equiv C - H \quad (4)$$

believe our system is free of residual hydrogen, thus ruling out acetylene formation from $C_2 + H_2$.) However, another mechanism for acetylene formation in this system consistent with the label distribution is initial abstraction of H from methane to generate

⁽¹⁷⁾ Milligan, D. E.; Jacox, M. E.; Abouaf-Marguin, L. J. Chem. Phys. 1967, 46, 4562–4570. (18) Vu, H.; Atwood, M. R.; Vodar, B. J. Chem. Phys. 1963, 38,

⁽²⁴⁾ The reactor is patterned after that described by: Skell, P. S.; Wescott, D., Jr.; Golstein, J. P.; Engel, R. R. J. Am. Chem. Soc. 1965, 87, 2829. The reaction of C vapor with CH_4 is complicated by the fact that methane is somewhat volatile at 77 K unlike most of the substrates we study by this method. Thus, gas-phase pyrolysis may be a problem.

methylidyne (CH) which subsequently dimerizes (eq 5). It has

$$C + CH_4 \rightarrow H - C \xrightarrow{H - C} H - C \equiv C - H$$
(5)

been demonstrated that arc-generated C atoms abstract hydrogen from benzene²⁵ to give CH, and it may be that this mechanism is operative in this system as well. Consideration of the ratios of labeled products along with the ratio of starting methanes leads to the conclusion that there is an inverse isotope effect $(k_{\rm H}/k_{\rm D})$ = 0.79) on the hydrogen abstraction. While the origin of this isotope effect is not clear, it is interesting that abstraction of H or D from C_2H_6/C_2D_6 by ¹¹C atoms has a $k_H/k_D = 0.83$ at room temperature.26

Since acetylene formation in this system involves a small inverse isotope effect, it is instructive to examine the label distribution in the 1,3-butadiyne generated in this reaction. In this case, $d_0:d_1:d_2 = 1:0.24:1.5 \times 10^{-3}$, and the results are consistent with a substantial normal deuterium isotope effect in striking contrast to the acetylene case. It is thus clear that the butadiyne and the acetylene cannot arise from hydrogen abstractions by the same species. Possible mechanisms of formation of 1,3-butadiyne include dimerization of C_2H (eq 6) and consecutive H abstractions by C₄ (eq 7). An examination of the ratio of butadiyne- d_0 to

•C=C• + CH₄
$$\rightarrow$$
 H-C=C• $\xrightarrow{H-C=C•}$
H-C=C-C=C-H (6)
•C=C-C=C• + CH₄ \rightarrow H-C=C-C=C• $\xrightarrow{CH_4}$
H-C=C-C=C-H (7)

 $-d_1$ indicates an isotope effect of $k_{\rm H}/k_{\rm D}$ of 6.8 for the hydrogen abstractions leading to this species. Since the acetylene and butadiyne show substantially different isotope effects on their formation, they both cannot have C_2H as a precursor.

In order to clarify the mechanism of acetylene formation in the reaction of carbon with methane, we have generated C_1 by the decomposition of 5-diazotetrazole $(1)^{27}$ in the presence of gaseous methane. When 1 was decomposed in the presence of a mixture of CH_4 and CD_4 , the reaction was complicated by the fact that some C_2H_2 was generated in a concerted decomposition of a tetrazole dimer formed during the production of 1. However, the ratio of C_2HD to C_2D_2 indicates that the acetylene is again statistically labeled with a small isotope effect favoring D abstraction $(k_{\rm H}/k_{\rm D}$ = 0.90, 110 °C) in the same manner as that produced in the reaction of arc-generated C vapor with methane. Since the decomposition of 1 in the presence a large excess of methane is unlikely to generate C_2 , we feel that dimerization of CH (eq 5) is the most reasonable mechanism of acetylene formation in this system. If we take the small inverse isotope effect on acetylene formation under both sets of reaction conditions as evidence that the same mechanism is operative in both cases, we conclude that the majority of acetylene formed in the reaction of C vapor with CH_4 results from dimerization of CH.

$$N_{-}^{N_{2}} \longrightarrow 3N_{2} + C \xrightarrow{1:1 CH_{4}: CD_{4}}$$

$$N_{-}N \longrightarrow 1$$

 $HC \equiv CH + HC \equiv CD + DC \equiv CD + H_2C \equiv CH_2 + D_2C \equiv CD_2$

If the butadiyne results from dimerization of C_2H , a reaction which has been shown to be extremely rapid,²⁸ the observed isotope effect is for the abstraction of hydrogen from methane by C_2 . Although the isotope effect on abstractions by either C or C_2 on methane has not been measured, the corresponding reactions of both of these intermediates with H_2 and D_2 have been investigated. The reaction of $C(^{1}D)$ with H_{2} to generate CH (eq 8) proceeds without isotope effect,²⁹ while the abstraction of hydrogen from

$$H_2$$
 or D_2 by ${}^{3}C_2$ (eq 9) has a $k_{\rm H}/k_{\rm D}$ = 5.2 at 350 K.³⁰ Since the

$$C + H_2 \rightarrow H - C \qquad k_H / k_D = 1 \qquad (8)$$

•C=C• + H_2 \rightarrow H - C=C•
$$k_H / k_D = 5.2 \qquad (9)$$

reaction of ${}^{3}C_{2}$ with H₂ ($A = 1.55 \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}$, E_{a} = 3.01 kcal/mol)³⁰ should be similar to that of ${}^{3}C_{2}$ with CH₄ (A = $1.65 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, $E_a = 5.57 \text{ kcal/mol}$,³¹ we conclude that an isotope effect on H abstraction by ${}^{3}C_{2}$ is expected. The most likely reaction between ${}^{3}C_{2}$ and methane is hydrogen abstraction to give $C_{2}H^{.32}$ This species would subsequently dimerize to butadiyne. Although these results do not rule out a mechanism for butadiyne formation involving sequential H abstractions by C₄ upon which there is a $k_{\rm H}/k_{\rm D} = 6.8$, the amount of C4 in arc generated carbon vapor has been shown to be relatively low.²

The products reported here for the condensation of carbon vapor with methane at 77 K indicate that both C-H insertion and hydrogen abstraction occur with C while H abstractions probably dominate in the reactions of C_2 and C_3 . If this is the case, we may expect to find spectral evidence for some of these hydrogen abstraction products in the low-temperature matrix experiments. Ethynyl radical, C_2H , the initial product of hydrogen abstraction by C_2 , has been observed to show a carbon-carbon stretch at 1848 cm⁻¹ in a Kr matrix at 12 K.³³ Propynylidyne, C₃H, and propynylidene, HC=C-CH, the respective products of abstraction of one of two hydrogens by C_3 , have been shown to absorb at 1834 and 2140 cm⁻¹ in Kr matrices at 12 K.³³ Returning to our matrix isolation studies, one band is indeed present in these regions. Thus, the 2136.6-cm⁻¹ band could be due to $HC \equiv C - CH$; (bands for C_2H were not observed). Since C_3 was partially consumed by pure CH4, the formation of some HC=C-CH does seem probable. Still another possibility is the C_3H_2 isomer $H_2C=$ C=C:, vinylidenecarbene. Maier and co-workers³⁴ report IR bands at 1963, 1952, and 1000 cm⁻¹, and we observe new bands in these regions. Thus, it appears that C_3H_2 (at least two isomers) is formed in the C₃/CH₄ reaction under low-temperature conditions

An examination of the deuterium distribution in the allene produced in the reaction of arc generated carbon vapor with the 1.23:1 mixture of CH₄ and CD₄ revealed a ratio of $d_0:d_1:d_2:d_3:d_4$ = 0.5:4.9:6.0:3.3:0.7. This ratio is close to the statistical 1.5:4.9:6.0:3.3:0.7 calculated for a series of H abstractions by C₃ on a 1.23:1 mixture of CH₄ and CD₄ with $k_{\rm H}/k_{\rm D}$ = 1.

Analysis of the deuterium distribution in the ethylene generated in the condensation of carbon vapor with CH_4-CD_4 was not possible owing to incomplete separation from ethane in the GC-MS. However, the reaction of chemically generated C atoms, from decomposition of 1, with 1.23:1 CH_4-CD_4 in the gas phase gave only C_2H_4 and C_2D_4 , a result consistent with C-H insertion by $C(^{1}D)$ to give ethanylidene which rearranged to ethylene. It is interesting that this reaction appears to be characterized by a normal primary isotope effect of 3.56.

Carbon and Methyl Bromide. Carbon vapor reacts efficiently with alkyl halides near 77 K, as previously shown by Skell and co-workers.35 We were interested in finding out if such reactions proceeded at lower temperatures. Figure 5 illustrates that both C_2 and C_3 were almost completely consumed by 5% CH₃Br/Ar at near 10 K. Infrared studies (Figures 6-8) showed that larger carbon clusters were also consumed by CH₃Br, and several product bands were observed (Table II). First of all, Figure 7 shows

⁽²⁵⁾ Biesida, K. A.; Koch, C. T.; Shevlin, P. B. J. Am. Chem. Soc. 1980, 102, 2098.

⁽²⁶⁾ Taylor, K. K.; Ache, H. J.; Wolf, A. P. J. Am. Chem. Soc. 1975, 97, 597<u>0</u>. (27) Shevlin, P. B. J. Am. Chem. Soc. 1972, 94, 1397.

⁽²⁸⁾ Laufer, A. H.; Bass, A. M. J. Phys. Chem. 1979, 83, 310.

⁽²⁹⁾ Fisher, W. H.; Carrington, T.; Sodowski, C. M.; Dugan, C. H. Chem. Phys. 1985, 97, 433.

⁽³⁰⁾ Pitts, W. M.; Pasternack, L.; McDonald, J. R. Chem. Phys. 1981, 57, 19

⁽³¹⁾ Pitts, W. M.; Pasternack, L.; McDonald, J. R. Chem. Phys. 1982, 68, 417

⁽³²⁾ Skell, P. S.; Jackman, L. M.; Ahmed, S.; McKee, M. L.; Shevlin, P.

<sup>B. J. Am. Chem. Soc., in press.
(33) Jacox, M. E. J. Phys. Chem. Ref. Data. 1984, 13, 945.
(34) Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Hess, B. A., Jr; Schaad, L. J. J. Am. Chem. Soc. 1987, 109, 5183-5188. Also see: Jacox,</sup>

M.; Milligan, D. E. Chem. Phys. 1974, 4, 45-61.
 (35) Skell, P. S.; Harris, R. F. J. Am. Chem. Soc. 1965, 87, 5807-5808.

 Table II. Proposed Products and Their FT-IR Bands from the Carbon Vapor/CH₄, CH₃Br, and /H₂O Systems (cm⁻¹) at 10 K in Frozen Argon

 proposed species

C_2H_4 (from CH_4)	1544.5	1437.0	955.7	1
	ν с C	δCH2	951.9	
			def H ₂ C=CH	
CH ₃ CBr (from CH ₃ Br)		746.5	1193.7	
		(methyl sym bending)	1095.1	
			(methyl asym bend)	
CO (from H_2O)	2148.7, 2138			
	$\nu_{C=0}$			
acetylenic compds (from H ₂ O)		2051.8, 2038.3		
		VC		
CO (from D_2O)	2148	6_6		
· • •	ν _{C=0}			

Figure 5. UV absorption spectra for C_2 and C_3 at 10 K in (A) 5% CH₃Br/argon, laser evaporation time = 20 min (XeCl excimer laser, 75 mJ/pulse, 10 Hz); (B) in pure argon, evaporation time = 20 min (same laser conditions).

spectra taken at 77 and 10 K. In both spectra a new band "g" at 1193 cm⁻¹ was observed; a peak at this position could be due to an asymmetric CH₃ bending mode.^{5,35} Also a new band at 746 cm⁻¹ is probably due to a symmetric CH₃ bending mode. Another band at 1095 cm⁻¹ is observed at 10 K and also could be due to a CH₃ bending mode. Becuase of the similarities with other CH₃-M-X systems we have seen in matrices before, it seems likely that a CH₃ derivative was present. Possibly the insertion product CH₃CBr was stabilized under these conditions. We did not observe bands assignable to CH₂=CHBr, although CH₃Br did obscure the $\nu_{C=C}$ region somewhat.

As with the CH₄ system, CH₃Br with carbon vapor yielded a strong band at 2135 cm⁻¹. This could be due to an acetylenic compound, perhaps HC=CCH resulting from hydrogen abstraction by C₃. Note that C₂, C₃, and larger carbon clusters were consumed by CH₃Br.

Based on the evidence at hand, and comparing with our boron $atom/CH_3Br$ work, we believe carbon atoms reacted near 10 K to form the intermediate carbone. Since this is different from the

$$C + CH_3Br \rightarrow CH_3CBr$$

 C/CH_4 system, where insertion was followed by rearrangement to C_2H_4 , it seems likely that the upper electronic states of C atoms (¹S and ¹D) were quickly quenched by CH₃Br. Possibly only the

Figure 6. Partial infrared absorption spectra of carbon vapor/ CH_3Br system at 10 K: (A) CH_3Br only, (B) carbon plus CH_3Br .

Figure 7. Partial infrared absorption spectra of carbon vapor/CH₃Br system: (A) carbon plus CH₃Br at 77 K; (B) carbon plus CH₃Br at 10 K, (C) CH₃Br only at 10 K.

³P state was available then, which did react, but the reaction stopped at the carbene stage. At higher temperatures, of course, rearrangements to stable products would take place.³⁵

Carbon and Water. Using UV-vis spectroscopy to again monitor C_2 and C_3 consumption, we found that C_2 and C_3 interacted with water less efficiently than with CH₃Br, but more efficiently than with CH₄, as shown in Figure 9.

Infrared analyses (Figures 10–12) showed that carbon vapor deposited with H_2O/Ar did not yield bands that could be attributed to a simple adduct, which should show a change in the

Figure 9. UV absorption spectra for C_2 and C_3 at 10 K: (A) in 10% $H_2O/argon$, laser evaporation time = 15 min (XeCl excimer laser, 75 mJ/pulse, 10 Hz); (B) in pure argon, laser evaporation time = 15 min (same laser conditions).

H₂O bending mode near 1600 cm⁻¹ (Figure 12). Also, no new bands in the 1400-cm⁻¹ region were observed (Figure 11), where ν_{C-O} might be expected for H–C–OH.¹⁰ This is particularly interesting since such bands were predicted at 1335, 1375, and 1450 cm⁻¹.¹⁰ On the other hand, our work with B/H₂O did show a band for ν_{B-O} in the predicted region for H–B–OH.^{10,36}

Product bands that were found are illustrated on Figure 10. The "c" and "d" bands are probably due to $\nu_{C=C}$ for products formed from C₂ and/or C₃ reactions with H₂O (perhaps C₃O or HC=CCHO), but we are unable to assign structures at this time.

It can be seen that the C_3 band at 1997.8 cm⁻¹ is greatly diminished in the presence of H_2O , supporting this idea. Note, however, that these product bands were not observed in the analogous C/D_2O experiments. (Figure 10 C). Since deuterium shifted bands were not observed, we can only conclude that a large isotope effect must have prevented these analogous reactions with D_2O under these low-temperature conditions. In support of this, notice, the continued presence of the C_3 band. It should also be

Figure 10. Partial infrared absorption spectra of carbon vapor/ H_2O system at 10 K: (A) carbon in argon, (B) carbon plus 1% H_2O /argon, (C) carbon plus 1% D_2O /argon.

Figure 11. Partial infrared absorption spectra of carbon vapor/ H_2O system at 10 K: (A) 1% H_2O in argon, (B) carbon plus 1% H_2O in argon.

Figure 12. Partial infrared absorption spectra of carbon vapor/ H_2O system at 10 K: (A) 1% H_2O in argon, (B) carbon plus 1% H_2O in argon.

⁽³⁶⁾ Jeong, G. H.; Klabunde, K. J. J. Am. Chem. Soc., submitted for publication. Tanaka, Y.; Davis, S. C.; Klabunde, K. J. J. Am. Chem. Soc. **1982**, 104, 1013–1016. Klabunde, K. J.; Tanaka, Y. J. Am. Chem. Soc. **1983**, 105, 3544–3546.

noted that IR bands from larger carbon clusters still remained even in the presence of H_2O/Ar or D_2O/Ar .

The most prominent product band appeared at 2148.7 cm⁻¹, and we believe this is due to CO. A broader band at 2138 was also observed with C/H_2O , but with C/D_2O a much broader band centered at 2148 was observed.

Several workers have examined CO in frozen argon and have observed two bands.^{18,37} Pimentel and co-workers³⁸ reported that the 2148 band is due to monomeric CO while the 2138 band is due to aggregates of CO, with the higher energy band exhibiting an expected narrower line width. Pure, frozen CO shows a broad band centered at 2138 cm⁻¹.^{18,37,39}

We conclude that carbon atoms, probably ¹D, reacted with H₂O to form CO + H₂ under our experimental conditions (near 10 K and 1% H₂O in argon). We do not find any evidence for formaldehyde, adduct C-OH₂, or a stabilized insertion product H-C-OH. This contrasts with B atoms, which do yield an insertion product H-B-OH.³⁶ Note, however, that reaction of C(¹D) with H₂O at 100 °C generates CO and CH₂=O in a 4:1 ratio.¹² If the A factor for CO formation, the CO:CH₂=O ratio would be \geq 28.6 at 10 K. This small amount of CH₂=O would probably be undetectable in our system (matrix isolation conditions).

Conclusions

To summarize our carbon vapor/CH₄ results, we conclude that (1) C(¹S and ¹D) reacted near 10 and 77 K by carbon-hydrogen insertion and rearrangement to ethylene. Another reaction mode, perhaps with C(³P) was hydrogen abstraction to yield CH which subsequently dimerized to form acetylene. (2) C₂ and C₃ reacted by hydrogen abstraction processes, and the matrix isolation studies revealed IR absorption that could be due to intermediate HC \equiv CCH and H₂C=C=C:. (3) Butadiyne was formed by dimerization of C₂H through hydrogen abstraction by C₂. (4) Larger carbon clusters were relatively unreactive with methane near 10 K.

With CH₃Br carbon atoms reacted, and the evidence suggests that the insertion product CH₃CBr carbone was trapped at 10 K. This product is probably the result of reaction C(³P), and C(¹S and ¹D) atoms seem to be quenched rapidly in the presence of CH₃Br. Carbon clusters also reacted, but products could not be determined. However, a band that could be due to HC==CCH was observed which could come from hydrogen abstraction by C₄.

With water, carbon atoms reacted, probably $C(^{1}D)$, to yield CO and, presumably, hydrogen. No evidence for a simple adduct C-OH₂, and insertion product HCOH, or formaldehyde was found at 10 K. Carbon clusters reacted with water to yield acetylenic products that could not be identified as yet. However, D₂O reacted much less efficiently than H₂O.

Experimental Section

Matrix Isolation Experiments at 10 K. Vapors of carbon were generated by focusing a XeCl excimer laser (Questek Series 2000) beam on the target surface positioned in the vacuum chamber.⁵ A large excess of prepurified argon gas containing the reactive species (such as CH_4 , CH_3Br , or H_2O) was supplied from an outside bulb. These were cocondensed on the CaF_2 window for UV-vis absorption experiments, or on KBr for infrared absorption experiments. The temperature of the window was kept at 10 K by an Air Products Displex closed-cycle helium refrigerator. The pressure of the reaction chamber was kept near 1 × 10^{-5} Torr. Laser pulses continued for about 10 min for UV-vis absorption studies and for 2-3 h for infrared absorption studies.

The prepurified Ar (99.995%), ultrahigh-purity CH_4 (99.73%), and high-purity CH_3Br (99.5%) were supplied by Matheson Gas Products. Ar and CH_4 were passed through a liquid N_2 trap before storing in the glass bulb. CH_4 and CH_3Br were used in pure form for the infrared absorption studies. For the UV-vis absorption studies, in order to compare the band areas in solid argon with those in CH_4 or CH_3Br , the reagents were diluted in argon. The concentration of reactants CH_4 , CH_3Br , or H_2O in Ar was 5 or 1% as desired. Water was mixed with argon both for UV-vis and infrared absorption studies. Carbon rods were obtained from Johnson Matthey. CD_4 (99% D) and CD_3Br (99.5% D) were supplied from ICN Biochemicals, and D_2O (99.75% D) was obtained from J. T. Baker. Water was placed in a small tube which was connected to the main bulb through a valve. Before mixing water with the argon, the water was degassed to remove dissolved oxygen. Starting with a sample of doubly distilled and deionized water, a series of pumping-freezing cycles was initiated. The sample was frozen and opened to vacuum, with pumping continued while thawing. This freezing-thawing-pumping cycle was repeated five times for a given sample. The sample was then warmed again to room temperature and partially evaporated under vacuum to ensure complete degassing for half an hour before mixing. The UV-vis atomic absorption spectrum was taken in both matrices (pure argon and mixed matrix) to compare band areas.

The UV-vis absorption spectra were taken on a Cary-14 spectrophotometer with a resolution of 1 nm. Reaction products were investigated by infrared absorption using a DigiLab FTS/40 Fourier transform infrared spectrometer with a resolution of 1 cm⁻¹. Laser-generated carbon vapor was cocondensed with CH₄, CH₃Br, or H₂O on a KBr window in the vacuum chamber at 10 K.

A schematic diagram of a reaction chamber has been reported earlier.⁵ After passing through a concave lens (f/6 in.), the focused laser beam (75 to 140 mJ/pulse and about 5 pulses/s) was directed through the cold trapping window (a hole in the window) onto the target, which was vaporized. The vapor is directed back along the laser beam path and onto the window.^{40,41}

Reactions of Arc-Generated Carbon Vapor with Methane. The reactor design has been reported by Skell, Wescott, Goldstein, and Engel.²⁴ Carbon was vaporized by striking an intermittent arc between two graphite rods attached to water-cooled brass electrodes and condensed on the walls of the reactor at 77 K with reactants under vacuum. In a typical reaction, methane (140 mmol) was introduced into the reactor through the vacuum line and cocondensed on the walls of the reactor at 77 K. The volatile contents of the trap were analyzed by IR spectroscopy and quantitated by GC/MS (6 ft Porapak Q column). Products identified were acetylene (4.25 mmol), and trace amounts of allene which was detected in the IR and GC/MS in amounts to small to be quantitated.

Reaction of Arc-Generated Carbon Vapor with a Mixture of CH₄ and CD₄. This reaction was carried out as described above using a 1.23:1 mixture of CH₄-CD₄. The products were analyzed by GC/MS, and the deuterium distribution in the acetylene, butadiene, and allene was determined from the mass spectrum. The inability to separate ethane and ethylene by GC prevented an analysis of their deuterium distribution.

Decomposition of 5-Diazotetrazole (1), in the Presence of CD₄-CD₄. The diazotetrazole 1 was prepared from 1 g of 5-aminotetrazole and coated on the walls of a 500-mL round-bottom flask as previously described.⁴² The flask containing 1 was evacuated, and 100 mm of a mixture of CH₄-CD₄ (1.23:1) was introduced. The diazotetrazole was decomposed by heating at 110 °C for 5 min. At the conclusion of the reaction, volatiles were pumped through traps at -78 and -196 °C. The contents of the -196° trap were analyzed by IR spectroscopy which showed C₂H₄ (14.0 × 10⁻⁴ mmol), C₂D₄ (3.2 × 10⁻⁴ mmol), C₂H₂ (7.0 × 10⁻⁴ mmol), C₂HD (2.0 × 10⁻⁴ mmol), and C₂D₂ (0.9 × 10⁻⁴ mmol). Pyrolysis of 1 in the absence of substrate revealed considerable amounts of C₂H₂ which is thought to result from decomposition of a dimer formed during the diazotization process.⁴³

Acknowledgment. The support of the National Science Foundation is acknowledged with gratitude.

Registry No. 1, 86457-85-4; C, 7440-44-0; C₂, 12070-15-4; C₃, 12075-35-3; CH₄, 74-82-8; CH₃Br, 74-83-9; H₂O, 7732-18-5; D₂, 7782-39-0.

⁽³⁷⁾ Maki, A. G. J. Chem. Phys. 1961, 35, 931-935.

⁽³⁸⁾ Loroi, G. E.; Ewing, G. E.; Pimentel, G. C. J. Chem. Phys. 1964, 40, 2298-2303.

⁽³⁹⁾ Ewing, G. E.; Pimentel, G. C. J. Chem. Phys. 1961, 35, 925-930.

⁽⁴⁰⁾ Friichtennicht, J. F. (*Rev. Sci. Instrum.* 1974, 45, 51-56), first demonstrated that vapor beams can be produced in this manner. A high-power laser pulse can instantaneously increase the temperature of the target surface, within the focused area, well above its boiling point. An important advantage of laser evaporation is that heating is localized to a small area, and the remainer of the sample remains at ambient temperature. (41) Kang, H., and Beachamp, J. L. (*J. Phys. Chem.* 1985, 89,

⁽⁴¹⁾ Kang, H., and Beachamp, J. L. (J. Phys. Chem. 1985, 89, 3364-3367), have demonstrated that the vapor preferentially exits directly back along the laser beam path. This is because a hole is bored, acting like a rifle barrel directing the beam. This gives another advantage in that very little surface oxide is encountered by the beam, and so oxide vapor contaminents are minimized.

 ⁽⁴²⁾ Shevlin, P. B.; Kammula, S. L. J. Am. Chem. Soc. 1977, 99, 2627.
 Dyer, S. F.; Kammula, S. L.; Shevlin, P. B. J. Am. Chem. Soc. 1977, 99, 8104.
 (43) Paul, G. C. M.S. Thesis, Auburn University, 1984.